# Biological intercomparison in the California Current System: Objective

- To compare performance of 3 different established ecosystem models within a single physical circulation system
- Focus on
  - State variables
  - Rate processes
- Approach: A Latin Hypercube sampling of model rate parameters to optimize models to one configuration
- Summary statistics from 1-year (Monte Carlo) and 6year (rate process) runs
- Collaborations: Edwards, Banas (now MacCready), Chai



#### 3 models

- Cascadia (Banas)
- CoSiNE (Chai)
- NEMURO (Edwards)



A biogeochemical model for the US Pacific Northwest coast (NS Banas et al, JGR, 2009, KA Davis et al, in prep. biomass and species composition S Siedlecki et al, in prep) from microscopy (Lessard) microzooplankton dilution experiments (Lessard) small, large phytoplankton detritus mortality satellite and bottle chl (Kudela) POC:PON:chl stoichiometry (Kudela) biomass and species composition from microscopy (Lessard) dilution experiments (Lessard) · <sup>14</sup>C primary productivity (Kudela) deckboard incubations and nutrients (NO3 + NH4) growth kinetics expts (Kudela) attenuation-chl-salinity relationships bottle measurements (Bruland, Cochlan, Masson/IOS)



from CTDs (Hickey, Kudela)

· calibrated CTD oxygen (Hickey/Connolly)

benthic flux parameterization based on historical, local benthic oxygen consumption data Hartnett and Devol 2003)





#### Optimization

• The cost function  $J(\theta)$  summarizes model performance in one number

$$J(\theta) = \underbrace{\frac{1}{3} \frac{J_{nut}(\theta)}{J_{nut}(\theta_{ref})}}_{\text{NO}_3\text{-based}} + \underbrace{\frac{1}{3} \frac{J_{\text{coastal}}(\theta)}{J_{\text{coastal}}(\theta_{ref})}}_{\text{Chl-based}} + \underbrace{\frac{1}{3} \frac{J_{\text{offshore}}(\theta)}{J_{\text{offshore}}(\theta_{ref})}}_{\text{Chl-based}}_{45^{\circ}}$$

- Measures model-observation misfit as a function of select biological parameters  $\theta$
- Based on real satellite Chlorophyll and climatological nitrate from WOA
- Individual cost contributions are normalized by the reference simulation with parameters  $\theta_{\text{ref}}$





### Annual Average performance, Surface Chlorophyll



## Average Annual Performance, Surface Nitrate



Rate process comparison (1 of 2)
Pgrowth/P vs Zgraze/P, models and observations together,
Original parameters, Data from Banas et al. (2008)



Rate process comparison (2 of 2)
Pgrowth/P vs Zgraze/P, models and observations together
Optimized parameters, Data from Banas et al. (2008)



# Cascadia is at presently used in UW forward model system



# Performance of forward Cascadia run against Newport Time-series (2011-2015)





# Adjoint and Tangent linear models for <u>both</u> NPZD and NEMURO have been written and tested for 4D-Var Assimilation.

**Evaluation for Year 2000** 







### Summary: Intercomparison of Cascadia, NEMURO and CoSiNE within UCSC CCS model

- State variables:
  - NEMURO has lowest RMS error against satellite-derived chl and climatological nitrate
  - CoSiNE leaves high nitrate near surface, cannot be removed through optimization
  - Cascadia arguably suffers in terms of state-variable metric due to only one phytoplankton
- Rate process investigation reveals
  - CoSiNE exhibits grazing-limited production, limiting nitrate uptake
  - NEMURO and Cascadia are more consistent with observations, showing a shift from high phytoplankton growth in nutrient-replete conditions, shifting to a growth/grazing balance in low nutrient conditions
  - NEMURO rate processes reasonably span range of available observations
  - Cascadia does not yield high phytoplankton growth portion found in observations
- Cascadia is functioning in non-data-assimilative mode at UW in hindcast and forecast studies.
- 4D-Var assimilation demonstrated for both NPZD and NEMURO.



### Extra slides



# In case people are curious about individual cost function components

$$J_{nut}(\theta) = \frac{1}{4} \sum_{t \in \{\text{JFM}, \text{AMJ}, \text{JAS}, \text{OND}\}} \frac{1}{2} \left( \frac{1}{n_t} \left| \sum_{i=1}^{n_t} \bar{m}_{i,t}^{\text{NO}_3}(\theta) - \sum_{i=1}^{n_t} \bar{o}_{i,t}^{\text{NO}_3} \right| + \sqrt{\frac{1}{n_t} \sum_{i=1}^{n_t} \left( \bar{m}_{i,t}^{\text{NO}_3}(\theta) - \bar{o}_{i,t}^{\text{NO}_3} \right)^2} \right)$$

$$J_{\text{coastal}}(\theta) = \sqrt{\frac{1}{\#G_{\text{coastal}}} \sum_{x \in G_{\text{coastal}}} \frac{1}{12} \sum_{t=1}^{12} \log \left( \bar{m}_{x,t}^{\text{chl}}(\theta) / \bar{o}_{x,t}^{\text{chl}} \right)^2}$$

$$J_{\text{offshore}}(\theta) = \sqrt{\frac{1}{\#G_{\text{offshore}}} \sum_{x \in G_{\text{offshore}}} \frac{1}{12} \sum_{t=1}^{12} \log \left( \bar{m}_{x,t}^{\text{chl}}(\theta) / \bar{o}_{x,t}^{\text{chl}} \right)^2}$$

- Chlorophyll is in log-space and relative to satellite observations
- Nitrate is using seasonal and 1°x1° spatial averages relative to WOA



### Cost-function scatterplots







### Climatological cycle of rate processes Primary production

- Similar seasonal cycle of processes
- Magnitudes differ by factors 2-5 in different times of year and locations





### Climatological cycle of rate processes Zooplankton grazing

- Similar seasonal cycle of processes
- Magnitudes differ by factors 2-5 in different times of year and locations





#### Climatological cycle of rate processes Vertical export

- Similar seasonal cycle of processes
- Magnitudes differ by factors 2-5 in different times of year and locations





### NPZD rate statistics Spatial mean vs. every point



### NEMURO rate statistics Spatial mean vs. every point



### Rate process comparison (3 of 3) Diatoms only



### Evaluation of rate processes against observations (sorry, must flip axes)

- Dilution experiments from Oregon (E. Lessard) suggests that region experiences specific growth and grazing rates mostly between 0 and 1/d.
- This suggests that NEMURO (and optimized Cascadia) exhibit somewhat higher rates than measured.
- Must be added to constrain optimization.







Figure 2. Overview of results from dilution experiments used in this study. Each point represents one experiment. Low-nutrient, near-equilibrium points used to diagnose zooplankton rate parameters are marked with black circles. Standard errors are indicated with vertical and horizontal bars.

Banas et al. (2009)

#### Climatological cycle of rate processes Primary production versus grazing

 Total grazing and production between models (not shown) does not look that different (overall magnitudes vary between factor of 2-5, but along straight lines showing that growth and grazing vary proportionally to one another).

 When normalized by phytoplankton concentration (shown), differences between models are more clear.

- NEMURO is high growth/high grazing
   Cascadia is low growth/low grazing
- Optimization shifts Cascadia toward the NEMURO dynamics (red->pink)
- As nutrients diminish (offshore) CoSiNE shows low growth (but still high grazing), which is the cause for the high nutrients left at the surface in CoSiNE simulations.

